
Our Data Build Process 1

OUR
DATA BUILD
PROCESS
The three-step process of sourcing, cleaning,
and maintaining our robust datasets.

Our Data Build Process 2

Ever wonder what it takes to create a
dataset of nearly 3 billion person records
and 18 million companies??

Now, let’s dig into each of these steps.

Customers are often interested in
understanding this process, whether it’s
for assessing data quality, ensuring
regulatory compliance, or even just
satisfying curiosity.

In this document, we will take a behind-the-
scenes look at the way People Data Labs
generates and maintains our production
datasets, including the key steps and our
rationale for some of our engineering
decisions. Specifically, we’ll answer the
following questions:

•	 Where do we get our data from?
•	 How and why do we standardize our data?
•	 How do we ensure our data is correct?

A general overview of our data build process
looks like this:

1.	We take in raw data from a variety of sources
2.	We standardize and deduplicate the raw

data to integrate it into our dataset
3.	At every step along the way, we perform

quality assurance checks to ensure quality
and compliance

Each quarter, we release an updated
production dataset with improved data and
features. We dedicate significant engineering
resources towards each release cycle to
ensure our dataset contains the most up-
to-date and highest quality data, while also
ensuring compliance with regulatory policies.

I N T R O D U C T I O N

Our Data Build Process 3

Data Sources
The first step in our data build process is sourcing raw data, which is how we incorporate
new records and fields into our dataset. Our entire production dataset is actually
composed of thousands of individual data sources, of which there are two categories of
data sources in our dataset: Data Union sources and public data sources.

Data Union Sources
Through transparent agreements customers and
other data partners, we created a data-sharing
community that we refer to as our Data Union.
Sources we ingest via the data union supply the large
majority of the person data in our dataset. Currently,
we are ingesting ~45 million records every month
from thousands of Data Union sources. Data Union
sources help us ensure that we stay within global
compliance regulations -- each partner attests that
they have provided any required notices and obtained
any required consents concerning the collection,
use, processing, transfer, and disclosure of personal
information – something that we confirm and verify.

Our second primary source of data, apart from the
Data Union, are public data sources. We define public
sources as a source of data that is available to anyone
in the world with an internet connection. We crawl the
web to extract information in the same way Google,
Bing, or any other search engine does. Public sources
generally provide us with information on companies,
schools, and locations, as well as an individual's work
history, education, and more.

Public Sources

illustration for data sources

S T E P O N E

DATA UNION
SOURCES PUBLIC

SOURCES

OUR DATASET

Data Sources

Our Data Build Process 4

Data Standardization & Deduplication
After sourcing raw data, our next step is to integrate it into our production dataset, which
involves standardizing the data formats and merging data for duplicate records together.

Standardization

Parsing, or standardizing, or cleaning the data
means converting raw data into a standardized
format. What this format is and our methods vary
by field, but the key is that every field in our data
has some baseline cleaning. This cleaning might
mean simply lower-casing the data and stripping
whitespace (e.g. turning “ Cory “ into “cory”), or
confirming that the data field follows a specific
format (like local@domain.com for an email).

There are many reasons why standardization
is important. Internally, as a data provider,
standardizing our data enables us to seamlessly
integrate new sources of data into our full
production dataset. In particular, it helps with
merging and updating records together as part
of our entity resolution/deduplication process,
by making our data fields as clean as possible.
The benefits of standardization even extend to
customers as well, since creating data standards
provides an easy and consistent way to understand
and consume our data.

In fact, standardization is a key reason that allows
our products (such as our Enrichment and Search

APIs) to work the way they do. For example, all
of the cleaning we do during our standardization
process, we also do in the Enrichment API. This
means that our Enrichment API logic is functionally
taking a customer input and directly tapping into
our cleaning and entity resolution expertise to
generate a match. This is essential because for
us to be able to match an Enrichment or Search
request for Sean Thorne in SF against our record
for sean thorne in san francisco, we need to have
standardization.

For those who are curious or would like to
understand and leverage our data standards, we
publicly documented our standardization format for
each field in our Person Manual, which summarizes
the possible values for each field and our
persistence commitments to ensure forward and
backward compatibility. Additionally, for several
key fields (referred to as canonical fields) we have
also provided datasets of the enumerated possible
values that we have defined (such as for countries,
majors, etc.).

STANDARDIZED F IELD VALUESRAW F IELD VALUES

Name: Cory Page full_name: cory page

location_country: united statesCountry: US

location_metro: san francisco, californiaCity: San Francisco

Illustration of the data
standardization process.

Raw field values are
processed and standardized
with consistent formatting,
spelling and for some fields,
canonicalized values.

S T E P T W O

https://en.wikipedia.org/wiki/Whitespace_character
https://docs.peopledatalabs.com/docs/person-manual
https://docs.peopledatalabs.com/docs/canonical-data

Our Data Build Process 5

Deduplication (Entity Resolution)
After standardization, another key transformation
we perform during our data build process is what
we refer to as deduplication or entity resolution.

In simple terms, we want to know whether each
record we ingest belongs to an existing profile
in our dataset or is a completely new profile that
we should create. The challenge, however, is that
we have over 2.5 billion records in our database
and we add hundreds of millions (if not billions) of
records each quarter that we need to merge into
our existing database. To directly compare billions
of records is an impossible task.

Assuming we have three billion total records we
want to compare, we would need to make 9.0e18
comparisons. Even though each comparison might
take one millisecond, in total the whole job would
take 285,198,882 years!

Instead, we try to isolate target groups of records
together by creating “blocks” — small groups of
records that share a common key. By picking a key
(for instance: full name) and sorting records into
each key, we significantly decrease the amount of
time we need to make comparisons. Three billion
records at 1ms/record will take 50 minutes to
group. We end up with small groups (say the max
size is 1,000 records), which can be constructed in
a matter of minutes, rather than hundreds of millions
of years.

We block on a variety of keys to maximize our
number of merges, focusing on fields that are the
most likely to be unique and generate matches.
Finally, we have two types of techniques that we
use to determine whether or not to merge records:
deterministic and probabilistic methods.

Figure illustrating blocking process which reduces the time needed to compare records during the entity merging process. The blocking
keys in this toy example are just the full_name field.

UNORGANIZED DATA BLOCK ORGANIZED DATA

ALL RECORDS IN DATASET

BLOCK 1

Records with full_name = “Alice Smith”

BLOCK 2

Records with full_name = “John Doe”

S T E P T W O

Our Data Build Process 6

Merging by Deterministic Methods
The deterministic method is very easy to
understand. We have created a defined set of rules
that, when true, indicate to us that we can 100%
confirm two records are the same. An example of
a rule might be: We know that two records that
share a name and phone number are the same,
regardless of other information.

In order to determine these rules, we’ve done
massive amounts of data build QA. For the most

part, we don’t make changes to our deterministic
matching logic. There’s not a lot of lift to be gained
by changing our merging rules without significantly
decreasing the quality of our data. This means, to
link more records together deterministically, we
need more data that gives us more blocking keys
and matchable data. If two records don’t share
enough common data, we can’t deterministically
merge them.

Merging by Probabilistic Methods
Whereas our deterministic methods are relatively
fixed, our probabilistic methods are always
evolving. In fact, when you hear us say we are
adding more linkages, this generally means we are
typically improving our probabilistic methods.

Our probabilistic methods are comprised of two
phases: linkage creation and linkage thresholding.

Linkage Creation
In this stage, we have a set of records we want to
evaluate whether or not to merge. Linkage creation
means finding the most likely matching record in
our data (i.e. within the same block) for each of
these records, and computing a likelihood score
to rate how good of a match these two records
are. To find the most likely record, we perform a
search nearly identical to what is done in our Person
Enrichment API, and generate the likelihood score
using a variant of TF/IDF, which uses all the fields in
our data to create this likelihood.

An example to summarize what this process is doing
is as follows: how likely is it that there are two people

named Hayden Conrad, living in San Francisco,
with the title Assistant to the Regional Manager?

Linkage Thresholding
After creating and scoring the linkages in the
previous step, we create a “score threshold” we
are comfortable with calling a 100% linkage. We
typically check thousands of potential linkages by
hand whenever we make changes to the linkage
creation logic. This gives us a mapping between
ranges of scores and the probability that those
records are the same person. We then pick the
range we want and merge those records.

Unlike deterministic linkage methods, we don’t
necessarily need more data to create more
probabilistic linkages. We can add linkages by
manipulating either of the two steps: we could
improve our linkage creation logic or decrease
our minimum score and allow more of our created
linkages to actually merge. We tend to not decrease
our minimum score unless we’re highly confident in
that score decrease.

S T E P T W O

https://docs.peopledatalabs.com/docs/enrichment-api
https://docs.peopledatalabs.com/docs/enrichment-api
https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Our Data Build Process 7

Quality Assurance
Finally, let’s discuss how Quality Assurance is handled throughout our data build process.

Data Ingestion QA
Having good data starts with the data we take in.
Before we ingest a source, we test the quality of the
data using both automated processes and hand
checking.

Automation
Automation helps us identify glaring issues like false
positive linkages in the data source. We view our
existing dataset as a source of truth. This means that
if there’s a contradiction between our data and the
new data source, we’ve either identified a quality
issue in our data or in the source.

We tag sources as either trusted or untrusted based
on the quality of their linkages. If a source is trusted,
we use it as part of our entity resolution (merging)
process. If a source is untrusted, we append its
data when there is a possible linkage, but we don’t
expose that linkage to customers unless multiple
untrusted sources agree. Sources should be very
close to 100% accurate to be marked as trusted.

Hand Checking
We employ hand checking to review data that’s
harder to evaluate via automation (i.e. job titles). If
a job title doesn’t exactly match our existing data,
that doesn’t necessarily mean it’s wrong, so we
use hand checking to see if anything odd about
the source stands out. We’ll check full records from
the source, looking up people’s social profiles,
addresses, etc. and comparing data.

Why QA?
First of all, quality assurance is really
important. The consequences of poor QA
can be quite negative to both us and our
customers.

For example, if there is a data quality issue,
we may have to rebuild the data which
can take up to a week. This costs money,
computational resources and delays
releases that many customers wait and
rely on. Additionally, these issues have the
potential to impact a massive amount of
customers. When we do a data release,
we are releasing to both the API and to our
license customers and each has their own
nuances that make QA’ing our data before
we release crucial.

S T E P T H R E E

Our Data Build Process 8

As an additional check, we also aggregate the
common values for every data field in the source.
For example, if we see that the name tim appears
an uncharacteristically high number of times, that
might be a cause for suspicion. Some other relevant
examples include:

•	 Data sources inferring emails (we see the same
email appearing many times across records)

•	 A “default value” for a field. For example, often
when a birth day // month is unknown, a data
source will fill it in with 01 or some other default
value.

•	 Bias in the data that makes it more // less
valuable (all records in this source are in Vietnam)

Standardization QA
Before we push the data into the build, we also run
it through our data standardization process, so we
can check how fields parse. Some sources have
an uncharacteristically low rate of standardization
for some fields, which is an indicator of low-quality
data. For example, if many people in the data
source don’t have a complete last name (just an
initial) or fill rates for a field we deemed valuable
turn out to be very low, we may decide to drop the
source. This happens more frequently than you
might think, particularly if you don’t have a good
random sample of data for your initial QA. Some
sources tend to be amalgamations of multiple data
files, where for example, the top 1mm people might
be great, but then the next 99mm are not so great.
To mitigate this, we split our data sources into part
files with a maximum file size and then randomly
sample across all the files from the start.

If we make any logical changes to how we
standardize a data field (i.e. change our logic for
matching locations, fix a bug in the name parser,

etc.), we test it by running the cleaner code on
~50k unique possible inputs. We store the legacy
output for that test and run a comparison. We then
hand check to ensure any changes between the old
and the new output are intended, or that a change
is a net positive. As an example, often a change
to our cleaning logic might lead to 8% of records
improving, but 1% losing data. We generally see
multiplicative improvements (i.e. more than 2-3x) in
the parsing logic as a good thing, even if it causes a
few records to be adversely impacted.

Deduplication QA
Entity resolution (merging) is a particularly risky
process, and it is quite easy to do real damage if our
process is over-aggressive. Just like we check our
data sources for false-positive merges and discard
them if they have too many errors, we also hand
check our own data. Any time we make logical
changes to our record linkage we risk creating
Frankenstein records.

PDL definition: Frankenstein record is a single
data record that represents multiple people. Like
Frankenstein’s monster, it is composed of parts
of multiple people (person A’s email, person B’s
Linkedin, etc.). These records negatively impact
customers across all use cases.

We are extremely sensitive to this and whether this
means performing hand checks on the source of
truth records, or pulling stats, we check everything
we can to ensure we don’t run into issues here.
We also tag Frankenstein records in our data.
Once a record has a certain amount of PII, we
conservatively determine it is a Frankenstein record.
We delete these records from the data licenses and
only surface these records as an API match if there is
no other possible record we could surface.

S T E P T H R E E

Our Data Build Process 9

Final Build QA
Once a data build is complete, there are multiple
ways in which we try to ensure the quality of
our final dataset. We use a variety of techniques
ranging from spot-checking segments of our data
(both randomly and ones known or predicted to
be problematic) as well as high-level aggregate
checks. One simple example of an aggregate check
performed by our Data Pipeline team is described
below.

Example Data Quality Check:
Aggregate Statistics
We post a sample of the data and some high level
stats so that our data pipeline team can take a
closer look. Stats are similar to what we expose
to customers in our dataset stats as well as in our
recent quarterly release notes. We want to ensure
there’s no unexpected increases or decreases in
linkages or record counts. For example, if we had
a bug in our major parser, it might dramatically
decrease the number of majors in the data, in which
case we would flag this and begin an investigation.

Release QA
There are many more tests that our data pipeline
team might also perform, but assuming they have
given the OK on their quality assurance evaluation,
they pass the data to the applications team, who
will begin testing the data for license delivery and
API release. This involves indexing the data to the
staging API, running some test license deliveries
and assessing the output and fill rates to provide
a final internal evaluation of the build stats before
releasing.

Customer QA
In general, despite our best attempts at internal QA,
there will always be bugs that leak out simply due
to the size of our dataset. This means our customers
also play an important role in ensuring that our data
quality meets their expectations and standards.
For the most part, customers report bugs that are
minor but often these bug reports are actually quite
valuable as potential symptoms of wider problems.
Therefore, we take customer feedback seriously and
it is to our benefit to do so.

We have thousands of customers with a minimum
of one engineer looking at our data. That is 10x the
size of our current engineering team and 70x the
size of our data pipeline or applications team. This
is a key value proposition for our data as well, since
fixes brought up by any individual customer raise
the data quality across the dataset for all customers.

Future of QA
QA is an area where startups are generally weak,
but because of how tightly our product correlates
to our customer’s success and how integral our
product is to customers, this is something we aim to
be exceptionally good at. On the data side, we face
a unique problem that most other companies don’t
face. As we grow out and mature our QA, we are
confident that we will be building out data pipeline
features that rival or surpass the best in the industry.

S T E P T H R E E

https://docs.peopledatalabs.com/docs/datasets

Our Data Build Process 10

We hope this detailed
description of our build process
illustrates both the complexity
and care required to productize
a substantial dataset.

We believe that the result of our data build process provides our
customers with a unique value proposition for data that is accurate,
up-to-date, compliant, and continuously improving.

Interested in learning more? Get in touch with our team of data
experts to see how our data can power your business.

C L O S I N G T H O U G H T S

https://www.peopledatalabs.com/talk-to-sales

